Accelerating the pace of engineering and science

# Documentation Center

• Trials

### Use only in the MuPAD Notebook Interface.

This functionality does not run in MATLAB.

## Syntax

```radsimp(z)
```

## Description

radsimp(z) tries to simplify the radicals in the expression z. The result is mathematically equivalent to z.

## Examples

### Example 1

Simplify these constant expressions with square roots and higher order radicals:

```radsimp(3*sqrt(7)/(sqrt(7) - 2)),

`radsimp((1/2 + 1/4*3^(1/2))^(1/2))`

`radsimp((5^(1/3) - 4^(1/3))^(1/2))`

```radsimp(sqrt(3*sqrt(3 + 2*sqrt(5 - 12*sqrt(3 - 2*sqrt(2))))
+ 14))```

`radsimp(2*2^(1/4) + 2^(3/4) - (6*2^(1/2) + 8)^(1/2))`

```radsimp(sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3))
- sqrt(10 + 6*sqrt(3)))```

### Example 2

Create the following expression and then simplify it using radsimp:

`x := sqrt(3)*I/2 + 1/2: y := x^(1/3) + x^(-1/3): z := y^3 - 3*y`

`radsimp(z)`

`delete x, y, z:`

### Example 3

Use radsimp to simplify these arithmetical expressions containing variables:

`z := x/(sqrt(3) - 1) - x/2`

`radsimp(z) = expand(radsimp(z))`

`delete z:`

### Example 4

```radsimp((6*2^(1/2) + 8)^(1/2));

 z

## Return Values

Arithmetical expression.

## References

Borodin A., Fagin R., Hopcroft J.E., and Tompa M.: Decreasing the Nesting Depth of Expressions Involving Square Roots, JSC 1, 1985, pp. 169-188.