

The Engineering Meetings Board has approved this paper for publication. It has successfully completed SAE’s peer review process under the supervision of the
session organizer. This process requires a minimum of three (3) reviews by industry experts.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.
ISSN 0148-7191
Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE. The author is solely responsible for the content of
the paper.
SAE Customer Service: Tel: 877-606-7323 (inside USA and Canada)
 Tel: 724-776-4970 (outside USA)
 Fax: 724-776-0790
 Email: CustomerService@sae.org
SAE Web Address: http://www.sae.org

Printed in USA

2009-01-0271

A Verification and Validation Workflow for IEC 61508 Applications

Mirko Conrad
The MathWorks, Inc., Natick, MA, USA

Guido Sandmann
The MathWorks GmbH, Munich, Germany

Copyright © 2009 The MathWorks. Published by SAE International with permission.

ABSTRACT

Because of its ability to address software complexity and
productivity challenges, Model-Based Design with
production code generation has been extensively used
throughout the automotive software engineering
community. More recently, engineers have begun to
focus on compliance with external standards such as
IEC 61508 and the use of Model-Based Design.

For in-vehicle applications, the standard applied is
typically IEC 61508-3. To demonstrate standard
compliance, the objectives and recommendations
outlined in IEC 61508-3 have to be mapped onto Model-
Based Design processes and tools.

This paper discusses a verification and validation
workflow for developing in-vehicle software components
that need to meet IEC 61508 using Model-Based
Design.

INTRODUCTION

In the last decades, in-vehicle software has become
increasingly complex. The amount of functionality, which
has to be calculated by each control unit, and the
communication between control units, have risen
considerably.

To meet these challenges, the development process
plays a significant role. Model-Based Design for
automotive control units along the V-model is gaining
widespread acceptance in applications, because it offers
a series of advantages. Modeling facilitates the

communication between OEMs and suppliers, and also
between engineers in their projects.

At the center of Model-Based Design is an executable
model representing the embedded software component
to be developed. The model serves as the primary
representation throughout multiple phases of the
development process. An initial executable model
(executable specification) is refined and augmented until
it becomes a blueprint for the final implementation. In
addition, executable models can be used for various
verification and validation activities.

Because of its ability to address complexity and
productivity challenges, Model-Based Design has been
extensively used throughout the software engineering
community. But more and more, projects must comply
with standards, because modern ECUs and their
application software directly interact with systems such
as brakes and steering.

OEMs and suppliers have recently begun to consider
Model-Based Design for the development of embedded
software for applications that need to meet the IEC
61508 standard. Examples include application software
components of the electromechanical APA steering
system [JSB+08] for the Volkswagen Tiguan [FMC08].

For automotive in-vehicle applications, IEC 61508-3 is
often considered as state-of-the art within the industry.
To demonstrate compliance with the standard, the
objectives and recommendations outlined in IEC 61508-
3 need to be mapped onto Model-Based Design
processes and tools.

The remainder of this paper discusses a verification and
validation workflow for applications that need to meet
IEC 61508 using Model-Based Design.

A WORKFLOW FOR APPLICATION-SPECIFIC
VERIFICATION AND VALIDATION OF MODELS
AND GENERATED CODE

As other standards do, IEC 61508-3 calls for
application-specific verification and validation
regardless of the tool chain and the development
paradigm used.

For applications implemented with Model-Based Design,
the following two questions apply to application-specific
verification and validation:

1. Does the model correctly implement its (textual)
requirements?

2. Does the object code that will be deployed in the
ECU correctly implement the model’s behavior?

To facilitate the seamless use of Model-Based Design in
the context of IEC 61508, a reference workflow that
describes the verification and validation activities
necessary for IEC 61508-3 compliance has been
developed.

Following the above suggested division of the
verification and validation task for applications
developed using Model-Based Design and production
code generation, the workflow would be divided into the
following two steps (cf. [Ald01]):

1. Demonstrate that the model is correct and meets all
requirements

2. Show that the generated code is equivalent to the
model

The first step is design verification, which combines
suitable verification and validation techniques at the
model level. The second step is code verification.

VERIFICATION AND VALIDATION AT THE MODEL
LEVEL (DESIGN VERIFICATION) - The goal of design

verification is to gain confidence in the model, which is
then used for production code generation. This step
takes place at the model level, i.e., before the code is
generated.

Following the spirit of IEC 61508-3, the design
verification part of the reference workflow therefore
comprises a combination of reviews, static analyses,
and comprehensive functional testing activities at the
model level [Con08]. These activities together help
provide confidence that the design satisfies the
associated requirements. The result is a golden model,
i.e., a sufficiently validated and verified model that
implements the requirements and does not contain any
unintended functionality.

Requirements for design verification can be derived from
IEC 61508-3 clauses 7.4.6 (code implementation), 7.4.7
(software module testing), and 7.4.8 (software
integration testing).

Reviews and Static Analyses at the Model Level - Model
subsystems considered as modules (model
components) should be reviewed. If feasible, manual
model reviews should be supported by automated
static analyses of the model.

Modeling guidelines should be used, and adherence
with the guidelines should to be assessed. Modeling
constructs that are not suitable or not recommended for
production code generation should not be used.

Tool support: Model reviews can be facilitated by using
reports or Web views generated with Simulink Report
Generator. Adherence to a modeling guideline can be
partially enforced by using predefined or customized
modeling standard checks in Model Advisor [Beg07].

Module and Integration Testing on the Model Level -
Model components should be functionally tested using
systematically derived test vectors. The objective of this
module testing is to demonstrate that each model
component performs its intended function and does not
perform any unintended functions.

As module testing is completed, module integration
testing should be performed with predefined test
vectors, i.e., the model integration stages should be
tested in accordance with the specified integration tests.
These tests should show that all model modules and
model subsystems interact correctly to perform their
intended function and do not perform unintended
functions.

Tool support: Simulink Verification and Validation
supports various facets of model testing.

VERIFICATION AND VALIDATION AT THE CODE
LEVEL (CODE VERIFICATION) - We use translation

validation through systematic testing (translation
testing) to demonstrate that the execution semantics of
the model are being preserved during code generation,
compilation, and linking.

Technically speaking, we are using numerical
equivalence testing between the model used for
production code generation and the executable derived
from the generated C code, and additional measures to
demonstrate the absence of unintended functionality.

Figure 1 gives an overview of the proposed translation
validation process for generated code.

Figure 1: Translation validation process.

Numerical Equivalence Testing - Equivalence testing is
performed to demonstrate numerical equivalence
between the model and the generated code.
Equivalence testing between the model used for
production code generation and the resulting object
code (also known as comparative testing or back-to-
back testing) constitutes a core part of the code
verification workflow.

Equivalence testing refers to the stimulation of both the
model used for code generation and the object code
derived from it through code generation and compilation
with identical test vectors. The validity of the translation
process, i.e., whether or not the semantics of the model
have been preserved during code generation,
compilation, and linking, is determined by comparing the
system reactions, or result vectors, of the model and the
generated code resulting from stimulation with identical

timed test vectors i(t). More precisely, the simulation
results of the model used for production code generation
oSIM(t) are compared with the execution results of the
generated and compiled production code oCODE(t).

Figure 2 summarizes the suggested translation
validation approach. In-depth discussions of equivalence
testing procedures can be found in [SC03, SC05,
SCD+07].

Testing for numerical equivalence is unique in that the
expected outputs for the test vectors do not have to be
provided [Ald01]. This makes equivalence testing well
suited to automation.

Model used for
production code generation

C source code Object code

Code
generation

Compilation/
linking

 Prevention of unintended functionality
a) Model vs. code coverage comparison
b) Traceability Analysis





 Equivalence testing



Figure 2: Numerical equivalence testing.

The following subsections provide detailed information
on the equivalence testing procedure.

Equivalence Test Vector Generation: A valid translation
requires that the execution of the object code exhibit the
same observable effects as the simulation of the model
for any given set of test vectors. Because complete
testing is impossible for complexity reasons, stimuli (test
vectors) shall be sufficient to cover the different
structural parts of the model.

To assess the model coverage achieved, some test
coverage metric shall be visible at SIL 2 and above
[SS05]. The extent and scope of structural model
coverage needs to be increased for the higher SILs.

Tool support: Model coverage analysis can be
performed by using the Model Coverage Tool in
Simulink Verification and Validation [Simulink
Verification and Validation].

Test vectors resulting from requirements-based testing
at the model level can be reused for equivalence testing.
Figure 3 illustrates equivalence testing of individual and
integrated modules1.

If the coverage achieved with the existing test vectors is
not sufficient, additional test vectors should be created.

If full coverage for the selected metric(s) cannot be
achieved, the uncovered parts should be assessed and
justification for uncovered parts provided. In practice, the
set of test vectors can be iteratively extended using
model coverage analysis until the mandated level of
model coverage has been achieved.

1 iCOMP(t) and oCOMP(t) refer to the test vectors and result
vectors for model components respectively; iINT(t) and
oINT(t) refer to the test vectors and result vectors for the
integration stages respectively.

Tool Support: Simulink Design Verifier can be used to
create additional test vectors for equivalence testing
[Simulink Design Verifier].

Equivalence Test Execution: The test vectors for
equivalence testing shall be used to stimulate both the
model used for production code generation and the
executable derived from the generated code.

The resulting object code shall be tested in an execution
environment that corresponds as far as possible to the
target environment to which the code will be deployed.

The resulting object code can either be executed on the
target processor or on a target-like processor, e.g., by
means of a processor-in-the-loop simulation (PIL
verification), or simulated by means of an instruction set
simulator for the target processor (ISS verification). If
feasible, PIL verification is the preferred approach.

If the execution of the resulting object code is not carried
out in the target environment, differences between the
testing environment and the target environment should
be analyzed to make sure that they do not adversely
alter the results.

Signal Comparison: After test execution, the result
vectors (simulation results) of the model oSIM(t) should
be compared with the execution results of the generated
code oCODE(t).

The simulation results of the model are used as the
baseline. They are matched to the result vectors
obtained from executing the object code.

Even if there is a correct translation of a Simulink or
Stateflow model into C code, one cannot always expect
identical behavior (equality). Possible reasons include
the limited precision of floating-point numbers,
quantization effects when using fixed-point math, and
differences among compilers. For these reasons, the
definition of correctness has to be based on sufficiently
similar behavior (sufficient similarity).

A suitable signal comparison algorithm should be
selected that is able to tolerate differences between the
result vectors representing the system responses oSIM(t)
and oCODE(t). There is a broad variety of potential
comparison algorithms, ranging from simple algorithms,
such as absolute difference, to more elaborated ones
such as the difference matrix method.

Two result vectors are sufficiently similar if their
difference with regard to a given comparison algorithm is
less than or equal to a given threshold. The selection of
the comparison algorithm and the definition of the
threshold value depend on the application under
consideration and need to be documented.

Simulink Fixed Point software enables performing bit-
true simulations of model portions implemented using

fixed point math to observe the effects of limited range
and precision on designs built with Simulink and
Stateflow [Simulink Fixed Point]. When used with Real
Time Workshop Embedded Coder, Simulink Fixed Point
enables pure integer C code to be generated from these
model portions. The generated code is in bit-true
agreement with the model used for production code
generation, ensuring that the implemented design will
perform exactly as it did in simulation.

Sufficient similarity serves as a basis for defining
functional equivalence used to determine the numerical

correctness of the model-to-code translation: A model
and the code generated from it are regarded to be
functionally equivalent if the simulation of the model and
the execution of the executable derived from the
generated code lead to sufficiently similar result vectors
if both are stimulated with identical test vectors.

Tool support: Comparison algorithms can be
implemented in a general-purpose programming or
scripting language such as the MATLAB language.
MEval [MEval] provides a variety of predefined
algorithms for result vector comparison.

Figure 1: Equivalence testing of individual and integrated modules.

Prevention of Unintended Functionality - The second
activity in the code verification process is to demonstrate
that the generated C code does not perform any
unintended function.

Alternative techniques are available to achieve this
objective. They serve the purpose of demonstrating
structural equivalence between the model and the
source code.

One can use at least one of the following measures to
demonstrate that the generated C code does not
perform any unintended function:

 Model vs. code coverage comparison
 Traceability review

Model Versus Code Coverage Comparison: If model vs.
code coverage comparison is being used, model and
code coverage are measured during equivalence testing
and compared against each other. Discrepancies with
regard to comparable coverage metrics should be
assessed.

To be meaningful, structural coverage metrics
comparable with each other should be used on the
model and code level respectively. According to

[BCS+03], decision coverage at the model level and
branch coverage (C1) at the code level (which is also
sometimes termed decision coverage) can be used in
combination.

Discrepancies between model and code coverage with
regard to comparable metrics shall be assessed. If the
code coverage achieved is less than the model
coverage, unintended functionality could have been
introduced.

Tool Support: Code coverage information can be derived
from the IDE or by applying a standalone code coverage
tool to the generated source code.

Traceability Review: A traceability analysis of the
generated C source code can be performed to ensure
that all parts of this code can be traced back to the
model used for production code generation. In this case
the generated code is subjected to a limited review that
exclusively focuses on traceability aspects.

Nontraceable code shall be assessed.

Tool Support: Automatically generated Simulink block
comments can be used to generate tracing information
into the generated code [Real-Time Workshop

Model used for pro-
duction code generation Generated C code Object code

iCOMP(t)

iINT(t) iINT(t)

Equivalence testing (integrated modules)

Equivalence testing (individual modules)

oINT,CODE(t)

oCOMP,SIM(t)

oINT,SIM(t)

iCOMP(t) oCOMP,SIM(t)

Artifact
Verification / validation activity

Embedded Coder]. The Traceability Report from the
Real-Time Workshop Embedded Coder code generation
report helps to provide a complete mapping between
model blocks and the generated code. It lists eliminated
or virtual blocks versus traceable blocks. ‘Code-to-block
highlighting’ generates hyperlinks within the displayed
source code to view the blocks or subsystems from
which the code was generated. ‘Block-to-code
highlighting’ allows for any block in the model to identify
the resulting generated code.

CONCLUSION

Currently, IEC 61508-3 is a relevant standard with
respect to software development for embedded in-
vehicle applications. It defines requirements and
constraints for the software development and quality
assurance processes. These requirements apply to both
Model-Based Design and traditional software
development. However, implementing these
requirements within Model-Based Design requires
special consideration and creates specific challenges.

In this paper, the authors discuss Model-Based Design
workflows and tool considerations to address the
objectives of IEC 61508-3.

The proposed workflow for verification and validation of
models and generated code could be viewed as an
instantiation of the verification and validation
requirements outlined in IEC 61508-3 that exploits the
advantages of production code generation as an integral
part of Model-Based Design.

REFERENCES

1. [Ald01] Aldrich, W., Coverage Analysis for Model-
Based Design Tools, TCS 2001.

2. [BCS+03] Baresel, A., Conrad, M.,Sadeghipour, S.,
Wegener, J., The Interplay Between Model
Coverage and Code Coverage, 11. European Int.
Conf. on Software Testing, Analysis and Review
(EuroSTAR ‘03), Amsterdam, Netherlands, 2003.

3. [Beg07] Begic, G., Checking Modeling Standards
Implementation, The MathWorks News & Notes,
June 2007.

4. [Bur04] Burnard, A., Verifying and Validating
Automatically Generated Code, Int. Automotive
Conference (IAC ‘04) Stuttgart, Germany, 2004, pp.
71-78.

5. [Con07] Conrad, M., Using Simulink and Real-Time
Workshop Embedded Coder for Safety-Critical
Automotive Applications, Proc. Workshop
Modellbasierte Entwicklung Eingebetteter Systeme
III (MBEES'07), Schloß Dagstuhl, Germany, 2007,
pp. 41-50.

6. [Con08] Conrad, M., Model-Based Design for IIEC
61508: Towards Translation Validation of Generated
Code, Proc. Workshop Automotive Software
Engineering: Forschung, Lehre, Industrielle Praxis,

colocated with Software Engineering 2008, Munich,
February 2008.

7. [EC07] Erkkinen, T. and Conrad, M., Safety-Critical
Software Development Using Automatic Production
Code Generation, Proc. SAE World Congress 2007,
Detroit, USA, 2007.

8. [ECCert]
www.mathworks.com/company/pressroom/articles/a
rticle18304.html

9. Ekkehard Pofahl, Torsten Sauer, Oliver Busa.
10. [ECAVS]

www.mathworks.com/company/pressroom/articles/a
rticle17790.html

11. [Edw99] Edwards, P.D., The Use of Automatic Code
Generation Tools in the Development of Safety-
Related Embedded Systems, Proc. Vehicle
Electronic Systems, ERA Report 99-0484, 1999.

12. [Embedded MATLAB] Embedded MATLAB feature
page:
www.mathworks.com/products/featured/embedded
matlab

13. [FMC08] Fey, I., Müller, J., Conrad, M., Model-
Based Design for Safety-Related Applications, Proc.
Convergence 2008, Detroit, MI, USA, Oct. 2008.

14. [HC06] Harmon, R., Hote, C., Automatic Engine
Control Code Generation with Integrated Automatic
Static Code Verification, International Automotive
Conference (IAC ‘04), Stuttgart, Germany, 2006.

15. [IEC61508-3] IEC 61508-3:1998, Int. Standard
Functional Safety of
Electrical/Electronic/Programmable Electronic
Safety-Related Systems - Part 3: Software
Requirements, First edition, 1998.

16. [JSB+08] Thorsten Jablonski, Heiko Schumann,
Carsten Busse, Heiko Haussmann, Udo Hallmann,
Dirk Dreyer, Frank Schöttler, Die neue
elektromechanische Lenkung APA-BS,
ATZelektronik 01/2008 Vol. 3 (2008) 01, pp. 30-35.

17. [Model-Based Design] Model-Based Design Web
page:
www.mathworks.com/applications/controldesign/des
cription

18. [MEval] MEval product page:
www.itpower.de/meval_e.html

CONTACT

Dr. Mirko Conrad, Development Manager, Simulink
Certification and Standards, The MathWorks, Inc.

Mirko Conrad is a development manager at The
MathWorks in Natick, MA, where he leads the Simulink
Certification and Standards team.

He has previous automotive experience as a senior
research scientist and project manager at Daimler-Benz
/ DaimlerChrysler.

Mirko holds a Ph.D. in engineering (Dr.-Ing.) and an
M.Sc. in computer studies (Dipl.-Inform.) from Technical
University in Berlin, Germany. He is also a visiting
lecturer at Humboldt University in Berlin.

His publication record includes more than 60 papers on
automotive software engineering, Model-Based Design
and safety-related software. He is a member of the
Special Interest Group for Automotive Software
Engineering in the German Computer Society (GI-ASE)
and a former member of the ISO 26262 subworking
group on software.

E-mail: Mirko.Conrad @ mathworks.com

Guido Sandmann
Automotive Marketing Manager, EMEA
The MathWorks GmbH
Adalperostr 45
85737 Ismaning

E-mail: Guido.Sandmann@mathworks.de

