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ABSTRACT 

Because of its ability to address software complexity and 
productivity challenges, Model-Based Design with 
production code generation has been extensively used 
throughout the automotive software engineering 
community. More recently, engineers have begun to 
focus on compliance with external standards such as 
IEC 61508 and the use of Model-Based Design.  

For in-vehicle applications, the standard applied is 
typically IEC 61508-3. To demonstrate standard 
compliance, the objectives and recommendations 
outlined in IEC 61508-3 have to be mapped onto Model-
Based Design processes and tools. 

This paper discusses a verification and validation 
workflow for developing in-vehicle software components 
that need to meet IEC 61508 using Model-Based 
Design. 

INTRODUCTION 

In the last decades, in-vehicle software has become 
increasingly complex. The amount of functionality, which 
has to be calculated by each control unit, and the 
communication between control units, have risen 
considerably. 

To meet these challenges, the development process 
plays a significant role. Model-Based Design for 
automotive control units along the V-model is gaining 
widespread acceptance in applications, because it offers 
a series of advantages. Modeling facilitates the 

communication between OEMs and suppliers, and also 
between engineers in their projects.  

At the center of Model-Based Design is an executable 
model representing the embedded software component 
to be developed. The model serves as the primary 
representation throughout multiple phases of the 
development process. An initial executable model 
(executable specification) is refined and augmented until 
it becomes a blueprint for the final implementation. In 
addition, executable models can be used for various 
verification and validation activities.  

Because of its ability to address complexity and 
productivity challenges, Model-Based Design has been 
extensively used throughout the software engineering 
community. But more and more, projects must comply 
with standards, because modern ECUs and their 
application software directly interact with systems such 
as brakes and steering.  

OEMs and suppliers have recently begun to consider 
Model-Based Design for the development of embedded 
software for applications that need to meet the IEC 
61508 standard. Examples include application software 
components of the electromechanical APA steering 
system [JSB+08] for the Volkswagen Tiguan [FMC08]. 

For automotive in-vehicle applications, IEC 61508-3 is 
often considered as state-of-the art within the industry. 
To demonstrate compliance with the standard, the 
objectives and recommendations outlined in IEC 61508-
3 need to be mapped onto Model-Based Design 
processes and tools. 



 

The remainder of this paper discusses a verification and 
validation workflow for applications that need to meet 
IEC 61508 using Model-Based Design. 

A WORKFLOW FOR APPLICATION-SPECIFIC 
VERIFICATION AND VALIDATION OF MODELS 
AND GENERATED CODE 

As other standards do, IEC 61508-3 calls for 
application-specific verification and validation 
regardless of the tool chain and the development 
paradigm used.  

For applications implemented with Model-Based Design, 
the following two questions apply to application-specific 
verification and validation: 

1. Does the model correctly implement its (textual) 
requirements? 

2. Does the object code that will be deployed in the 
ECU correctly implement the model’s behavior? 

To facilitate the seamless use of Model-Based Design in 
the context of IEC 61508, a reference workflow that 
describes the verification and validation activities 
necessary for IEC 61508-3 compliance has been 
developed.  

Following the above suggested division of the 
verification and validation task for applications 
developed using Model-Based Design and production 
code generation, the workflow would be divided into the 
following two steps (cf. [Ald01]):  

1. Demonstrate that the model is correct and meets all 
requirements 

2. Show that the generated code is equivalent to the 
model 

 
The first step is design verification, which combines 
suitable verification and validation techniques at the 
model level. The second step is code verification. 

VERIFICATION AND VALIDATION AT THE MODEL 
LEVEL (DESIGN VERIFICATION) - The goal of design 

verification is to gain confidence in the model, which is 
then used for production code generation. This step 
takes place at the model level, i.e., before the code is 
generated.  

Following the spirit of IEC 61508-3, the design 
verification part of the reference workflow therefore 
comprises a combination of reviews, static analyses, 
and comprehensive functional testing activities at the 
model level [Con08]. These activities together help 
provide confidence that the design satisfies the 
associated requirements. The result is a golden model, 
i.e., a sufficiently validated and verified model that 
implements the requirements and does not contain any 
unintended functionality. 

Requirements for design verification can be derived from 
IEC 61508-3 clauses 7.4.6 (code implementation), 7.4.7 
(software module testing), and 7.4.8 (software 
integration testing). 

Reviews and Static Analyses at the Model Level - Model 
subsystems considered as modules (model 
components) should be reviewed. If feasible, manual 
model reviews should be supported by automated 
static analyses of the model. 

Modeling guidelines should be used, and adherence 
with the guidelines should to be assessed. Modeling 
constructs that are not suitable or not recommended for 
production code generation should not be used. 

Tool support: Model reviews can be facilitated by using 
reports or Web views generated with Simulink Report 
Generator. Adherence to a modeling guideline can be 
partially enforced by using predefined or customized 
modeling standard checks in Model Advisor [Beg07]. 

Module and Integration Testing on the Model Level - 
Model components should be functionally tested using 
systematically derived test vectors. The objective of this 
module testing is to demonstrate that each model 
component performs its intended function and does not 
perform any unintended functions.  



 

As module testing is completed, module integration 
testing should be performed with predefined test 
vectors, i.e., the model integration stages should be 
tested in accordance with the specified integration tests. 
These tests should show that all model modules and 
model subsystems interact correctly to perform their 
intended function and do not perform unintended 
functions. 

Tool support: Simulink Verification and Validation 
supports various facets of model testing. 

VERIFICATION AND VALIDATION AT THE CODE 
LEVEL (CODE VERIFICATION) - We use translation 

validation through systematic testing (translation 
testing) to demonstrate that the execution semantics of 
the model are being preserved during code generation, 
compilation, and linking. 

Technically speaking, we are using numerical 
equivalence testing between the model used for 
production code generation and the executable derived 
from the generated C code, and additional measures to 
demonstrate the absence of unintended functionality. 

Figure 1 gives an overview of the proposed translation 
validation process for generated code. 

 

Figure 1: Translation validation process. 
 

Numerical Equivalence Testing - Equivalence testing is 
performed to demonstrate numerical equivalence 
between the model and the generated code. 
Equivalence testing between the model used for 
production code generation and the resulting object 
code (also known as comparative testing or back-to-
back testing) constitutes a core part of the code 
verification workflow. 

Equivalence testing refers to the stimulation of both the 
model used for code generation and the object code 
derived from it through code generation and compilation 
with identical test vectors. The validity of the translation 
process, i.e., whether or not the semantics of the model 
have been preserved during code generation, 
compilation, and linking, is determined by comparing the 
system reactions, or result vectors, of the model and the 
generated code resulting from stimulation with identical 

timed test vectors i(t). More precisely, the simulation 
results of the model used for production code generation 
oSIM(t) are compared with the execution results of the 
generated and compiled production code oCODE(t). 

Figure 2 summarizes the suggested translation 
validation approach. In-depth discussions of equivalence 
testing procedures can be found in [SC03, SC05, 
SCD+07]. 

Testing for numerical equivalence is unique in that the 
expected outputs for the test vectors do not have to be 
provided [Ald01]. This makes equivalence testing well 
suited to automation. 
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Figure 2: Numerical equivalence testing. 

The following subsections provide detailed information 
on the equivalence testing procedure. 

Equivalence Test Vector Generation:  A valid translation 
requires that the execution of the object code exhibit the 
same observable effects as the simulation of the model 
for any given set of test vectors. Because complete 
testing is impossible for complexity reasons, stimuli (test 
vectors) shall be sufficient to cover the different 
structural parts of the model.  

To assess the model coverage achieved, some test 
coverage metric shall be visible at SIL 2 and above 
[SS05]. The extent and scope of structural model 
coverage needs to be increased for the higher SILs.  

Tool support: Model coverage analysis can be 
performed by using the Model Coverage Tool in 
Simulink Verification and Validation [Simulink 
Verification and Validation]. 

Test vectors resulting from requirements-based testing 
at the model level can be reused for equivalence testing. 
Figure 3 illustrates equivalence testing of individual and 
integrated modules1.  

If the coverage achieved with the existing test vectors is 
not sufficient, additional test vectors should be created. 

If full coverage for the selected metric(s) cannot be 
achieved, the uncovered parts should be assessed and 
justification for uncovered parts provided. In practice, the 
set of test vectors can be iteratively extended using 
model coverage analysis until the mandated level of 
model coverage has been achieved. 

                                                      
1 iCOMP(t) and oCOMP(t) refer to the test vectors and result 
vectors for model components respectively; iINT(t) and 
oINT(t) refer to the test vectors and result vectors for the 
integration stages respectively. 

Tool Support: Simulink Design Verifier can be used to 
create additional test vectors for equivalence testing 
[Simulink Design Verifier]. 

Equivalence Test Execution: The test vectors for 
equivalence testing shall be used to stimulate both the 
model used for production code generation and the 
executable derived from the generated code. 

The resulting object code shall be tested in an execution 
environment that corresponds as far as possible to the 
target environment to which the code will be deployed. 

The resulting object code can either be executed on the 
target processor or on a target-like processor, e.g., by 
means of a processor-in-the-loop simulation (PIL 
verification), or simulated by means of an instruction set 
simulator for the target processor (ISS verification). If 
feasible, PIL verification is the preferred approach. 

If the execution of the resulting object code is not carried 
out in the target environment, differences between the 
testing environment and the target environment should 
be analyzed to make sure that they do not adversely 
alter the results. 

Signal Comparison: After test execution, the result 
vectors (simulation results) of the model oSIM(t) should 
be compared with the execution results of the generated 
code oCODE(t).  

The simulation results of the model are used as the 
baseline. They are matched to the result vectors 
obtained from executing the object code. 

Even if there is a correct translation of a Simulink or 
Stateflow model into C code, one cannot always expect 
identical behavior (equality). Possible reasons include 
the limited precision of floating-point numbers, 
quantization effects when using fixed-point math, and 
differences among compilers. For these reasons, the 
definition of correctness has to be based on sufficiently 
similar behavior (sufficient similarity).  

A suitable signal comparison algorithm should be 
selected that is able to tolerate differences between the 
result vectors representing the system responses oSIM(t) 
and oCODE(t). There is a broad variety of potential 
comparison algorithms, ranging from simple algorithms, 
such as absolute difference, to more elaborated ones 
such as the difference matrix method.  

Two result vectors are sufficiently similar if their 
difference with regard to a given comparison algorithm is 
less than or equal to a given threshold. The selection of 
the comparison algorithm and the definition of the 
threshold value depend on the application under 
consideration and need to be documented.  

Simulink Fixed Point software enables performing bit-
true simulations of model portions implemented using 

 



 

fixed point math to observe the effects of limited range 
and precision on designs built with Simulink and 
Stateflow [Simulink Fixed Point]. When used with Real 
Time Workshop Embedded Coder, Simulink Fixed Point 
enables pure integer C code to be generated from these 
model portions. The generated code is in bit-true 
agreement with the model used for production code 
generation, ensuring that the implemented design will 
perform exactly as it did in simulation. 

Sufficient similarity serves as a basis for defining 
functional equivalence used to determine the numerical 

correctness of the model-to-code translation: A model 
and the code generated from it are regarded to be 
functionally equivalent if the simulation of the model and 
the execution of the executable derived from the 
generated code lead to sufficiently similar result vectors 
if both are stimulated with identical test vectors. 

Tool support: Comparison algorithms can be 
implemented in a general-purpose programming or 
scripting language such as the MATLAB language. 
MEval [MEval] provides a variety of predefined 
algorithms for result vector comparison. 

 

 
Figure 1: Equivalence testing of individual and integrated modules. 
 

Prevention of Unintended Functionality - The second 
activity in the code verification process is to demonstrate 
that the generated C code does not perform any 
unintended function. 

Alternative techniques are available to achieve this 
objective. They serve the purpose of demonstrating 
structural equivalence between the model and the 
source code.  

One can use at least one of the following measures to 
demonstrate that the generated C code does not 
perform any unintended function: 

 Model vs. code coverage comparison 
 Traceability review 
 
Model Versus Code Coverage Comparison: If model vs. 
code coverage comparison is being used, model and 
code coverage are measured during equivalence testing 
and compared against each other. Discrepancies with 
regard to comparable coverage metrics should be 
assessed.  

To be meaningful, structural coverage metrics 
comparable with each other should be used on the 
model and code level respectively. According to  

[BCS+03], decision coverage at the model level and 
branch coverage (C1) at the code level (which is also 
sometimes termed decision coverage) can be used in 
combination. 

Discrepancies between model and code coverage with 
regard to comparable metrics shall be assessed. If the 
code coverage achieved is less than the model 
coverage, unintended functionality could have been 
introduced.  

Tool Support: Code coverage information can be derived 
from the IDE or by applying a standalone code coverage 
tool to the generated source code. 

Traceability Review: A traceability analysis of the 
generated C source code can be performed to ensure 
that all parts of this code can be traced back to the 
model used for production code generation. In this case 
the generated code is subjected to a limited review that 
exclusively focuses on traceability aspects.  

Nontraceable code shall be assessed. 

Tool Support: Automatically generated Simulink block 
comments can be used to generate tracing information 
into the generated code [Real-Time Workshop 
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Embedded Coder]. The Traceability Report from the 
Real-Time Workshop Embedded Coder code generation 
report helps to provide a complete mapping between 
model blocks and the generated code. It lists eliminated 
or virtual blocks versus traceable blocks. ‘Code-to-block 
highlighting’ generates hyperlinks within the displayed 
source code to view the blocks or subsystems from 
which the code was generated. ‘Block-to-code 
highlighting’ allows for any block in the model to identify 
the resulting generated code. 

CONCLUSION 

Currently, IEC 61508-3 is a relevant standard with 
respect to software development for embedded in-
vehicle applications. It defines requirements and 
constraints for the software development and quality 
assurance processes. These requirements apply to both 
Model-Based Design and traditional software 
development. However, implementing these 
requirements within Model-Based Design requires 
special consideration and creates specific challenges.  

In this paper, the authors discuss Model-Based Design 
workflows and tool considerations to address the 
objectives of IEC 61508-3.  

The proposed workflow for verification and validation of 
models and generated code could be viewed as an 
instantiation of the verification and validation 
requirements outlined in IEC 61508-3 that exploits the 
advantages of production code generation as an integral 
part of Model-Based Design. 
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