THALES

Software Development with Real-Time Workshop Embedded Coder

Nigel Holliday Thales Missile Electronics

- Who are we, where are we, what do we do
- Why do we want to use Model-Based Design
- Our Approach to Model-Based Design
- Where did we use Model-Based Design
- What benefits were seen
- What difficulties did/do we experience
- Where do we want to go now
- Conclusions so far

JHP-XXXX.ppt – Your Directorate - Wednesday, 07 May 20

Who are we - Thales UK Operations in Defence (

- 2nd largest defence systems contractor in the UK
- Operates at 3 levels in the UK market
 - Prime contractor
 - Sub-system integrator where we take responsibility for integrating complete sub-systems for a platform
 - Sub-system supplier where we will offer in competition world class technology and / or products
- Building on our core systems integration capability
- Growing CLS (Customer Logistic Support) business

Where are we – Thales Missile Electronics (

- TME: Basingstoke
 - Single Integrated Site
 - On-site manufacturing
 - Laboratories
 - Environmental test facilities
 - 240 staff

Why do we want to use Model-Based Design (

- Save money!
 - Reduce coding effort and timescales
 - Reduce introduction of errors reduced risk
- Reduce the need for documentation
 - Requirements DOORS
 - Design specifications lost in translation!!
 - The model is the design graphical solution but well documented

Why do we want to use Model-Based Design (

- Early checking of software on target timing/resources
 - Functional correctness of algorithms
 - Determine run-time and memory requirements
- Design decisions on target hardware
 - Put on eval boards quickly to confirm following
 - 16-bit or 32-bit
 - Floating or fixed point?
 - Memory internal/external?
 - FPGA required?

Why do we want to use Model-Based Design

- Modelling engineers concentrate on creating the model and supporting real-world environments
- Embedded engineers concentrate on processor scheduling and I/O to the rest of the physical system
 - The model plugs into the embedded software harness
- Uptake of Model-Based Design could lead to less distinction between the two disciplines
 - Increased labour flexibility common toolsets
 - Hybrid engineers!!
 - Broader understanding of design and implementation

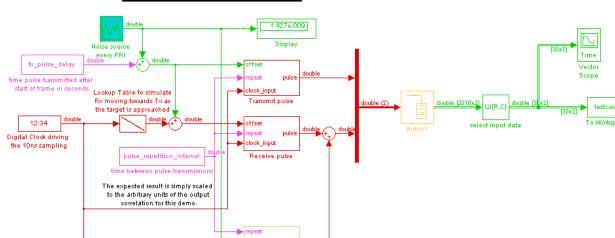
OHP-XXXX.ppt - Your Directorate - Wednesday, 07 May 2

Our Approach to Model-Based Design (

- TME approach to Model-Based Design was <u>not</u> to use it in the harness
 - Decision at the start of the pilot project was the model was to plug into a hand-coded scheduler/harness
 - C coding was used for all software programming of the target resources
 - Model could be taken from the Simulink "real-world" environment and C code generated
 - Some processor I/O simulation in real-world environment where required

Where did we use Model-Based Design

- Two projects used MBD
 - P1: Data processing for a single channel pulsed proximity sensor + timing algorithm
 - TME designed custom hardware for TDP
 - Software developed for 2 x dual-core 16-bit fixed-point DSPs
 - Serial and parallel I/O required with DMA
 - FPGA + analogue front-end
 - P2: Control algorithms for a gimbal assembly with mounted pulsed laser and PIR dual mode sensing
 - COTS hardware with 4 x floating-point DSPs
 - Single DSP used to run model
 - Parallel I/O
 - FPGA gateway to rest of the system
 - Vendor board support library



Where did we use Model-Based Design: P1 (

Simulator

his represents jitter between the pulse transm and the start of the sampling frame. You could add other noise sources in the calculation.

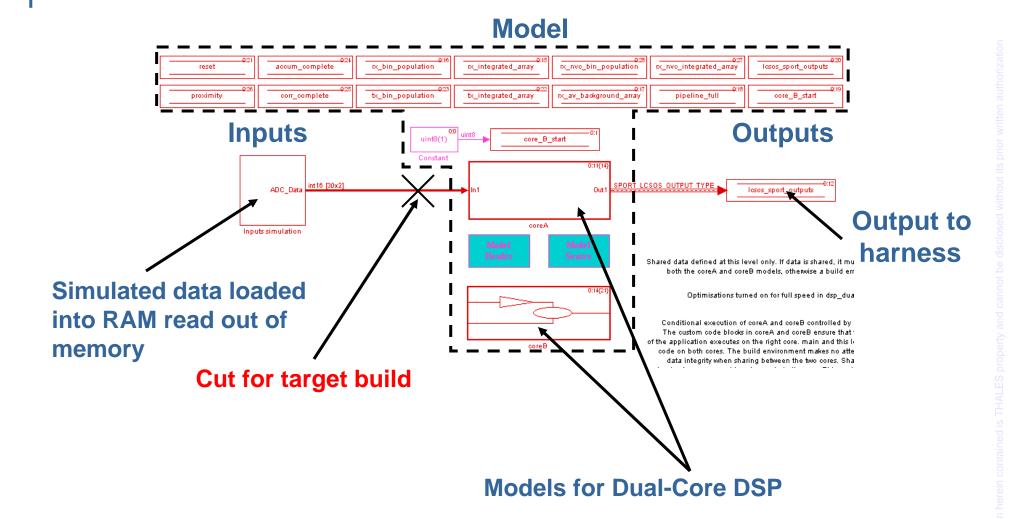
clock_input pulse

- Create representative simulator
- Historic Information
- Use measured results

Data saved as .mat file

Tx pulse with noise Rx pulse with noise & range law 18 16 Frame: 4151

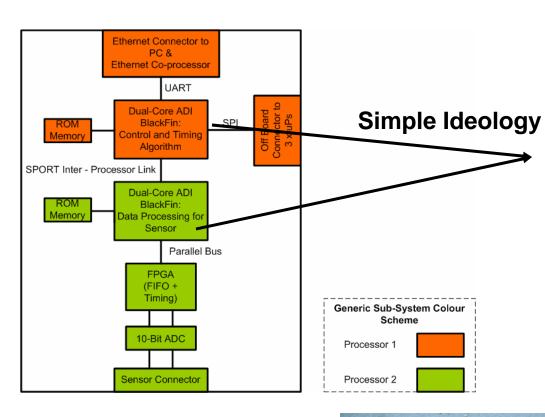
LCSOS_simulator_cv/Vector Scop File Axes Channels Window Help

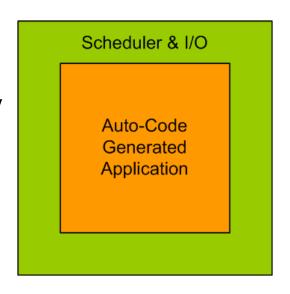

07 May

OHP-XXXX.ppt - Your Directorate - Wednesday,

Missile Electronics

Where did we use Model-Based Design: P1 (

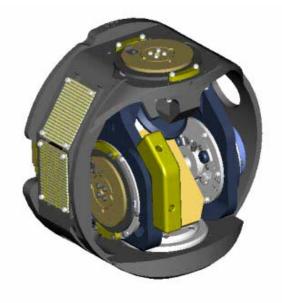




Where did we use Model-Based Design: P1 (

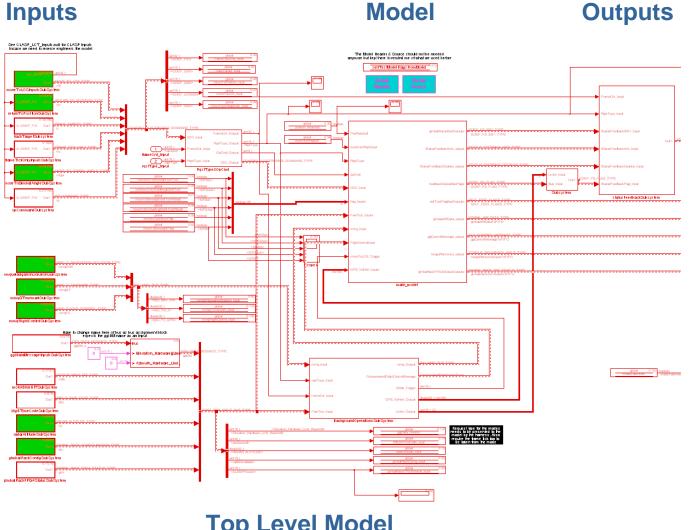
Generic scheduler with I/O for processor family

TME Custom Hardware



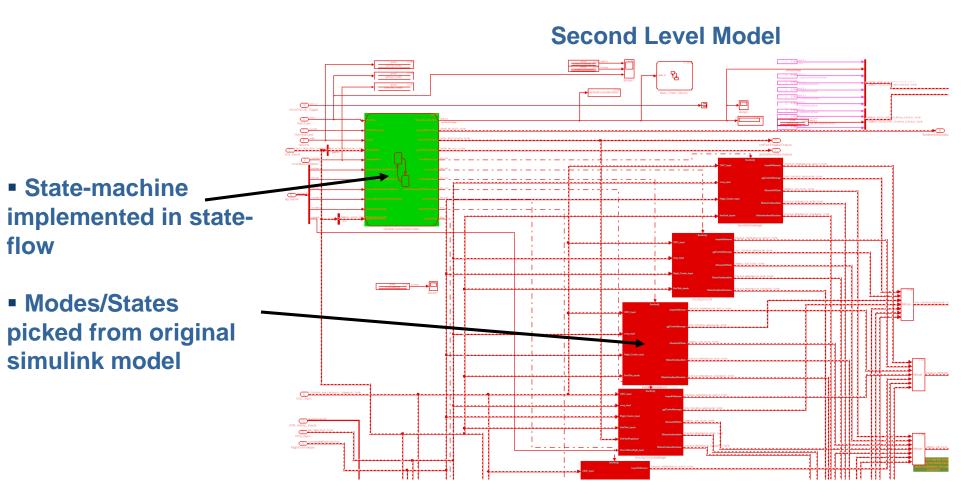
Where did we use Model-Based Design: P2 (

- Real-world model in Simulink
 - Several modes required
 - Single mode simulation model optimal— time/cost v payback
- Gimbal model developed in ProE

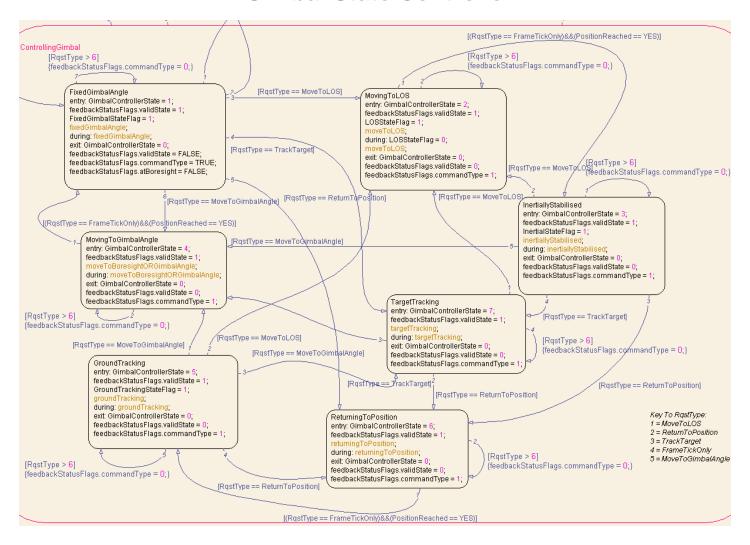


Where did we use Model-Based Design: P2 (

- Inputs derived from real-world model
- Model evaluated on hardware and compared against simulation for timing & correctness - it does what it says on the can



Where did we use Model-Based Design: P2



Where did we use Model-Based Design: P2 (

Gimbal State Controller

4

What benefits were seen

Re-use of simulation data

- Same stimuli used for model verification on hardware
 - Easy/fast capture of test stimuli for model from real-world model
 - Cross referencing simulation and hardware model versions
- Rapid prototyping possible
 - Extensive use of low cost microprocessor evaluation boards prior to making hardware decisions
 - Evaluate model and hardware it is to run on
 - Timing analysis/profiling can the model run fast enough on hardware
 - Optimise parts of model if necessary

HP-XXXX.ppt – Your Directorate - Wednesday, 07 May 200

What benefits were seen 🕒

Reduced specification writing

- No need for lengthy detailed design specs
 - Well documented model with graphical flow can yield almost as much detail as a written specification can do this in the model
 - Well organised model with several tiers can clearly show model hierarchy (with adequate labelling)
 - Software interface documentation still required
- Rapid response to change/additions to requirements
 - New model sections rapidly integrated and tested on hardware
 - Maximise use of existing architecture greater visibility with graphical model

What benefits were seen

- Powerful linkage between model and software run on the hardware established
 - During integration can return easily to model for debug
 - Simulink display facilities allow easy visibility for rapid debug
 - Still use microprocessor development environment
 - Breakpoints
 - Memory/register contents
 - Execution time
 - Can aid debug of third party sub-systems
- No perceivable increase in development time during the learning curve period
 - Scheduler required significant development time
 - This needs to be done anyway

What benefits were seen

- Ability to review model with third party
 - TME program management team
 - Customer
 - Other team project members
 - Internal review processes

What difficulties did/do we experience (

- Where to start!!!
 - No prior experience of Simulink or Stateflow
 - Mathworks training courses only in 2005
 - How to architecture the model for simulation
 - Limited experience of house keeping activities for code generation from a Simulink model
 - Template Make Files
 - Low level understanding of compiler options
 - Code and data placement in memory

ar-axax.ppt - Your Directorate - Wednesday, U/ May au

What difficulties did/do we experience

- Pressures to deliver on a live project
 - Learning curve to go up
- Debugging the model
 - Setting breakpoints in the model
 - Is it Simulink or the target environment
 - Program flow through the model
 - Graphical interpretation of execution order
 - Program control sometime difficult to understand
 - In-built debugger hard to drive lack of training/experience?

What difficulties did/do we experience

- How to configure a model for multiple developers
 - TME uses Sourcesafe for software
 - How do we handle multiple developers on a single model for configuration and integration – even for desktop development
 - More acute for embedded applications

Where do we go now

- Demonstrate significant reductions in timescales for model based development
 - Acceptance by program managers and company hierarchy only if visible savings
- Define a company process for model based design involving code generation
 - Record current knowledge so not lost!
 - Iterative/learning process
- Use on more projects
 - Increase expertise in model based design across the company product range and staff where applicable

- MISRA compliant hand/model generated code
 - Future products expected to require safety related software
 - Increase documentation within the models
- Make use of linkage with DOORS
 - For bigger programs
 - Simplify requirements and compliance management
- Make more use of in-built Simulink reporting tools to better describe model – the model is the specification

- No perceived increase in development time/cost in early programs
 - Savings masked by other activities that are also on the learning curve e.g. new processor
- If it happens in the model it will happen on the target
- Re-use of simulation data allows early evaluation of algorithms/models on target resources
- Model-Based Design very flexible and responsive to change (for example dual vs. single core)

- Still work to do to define a process
 - Iterative activity to get to a process that works
 - Flexible process to cater for desktop and embedded applications
- MathWorks pilot support throughout Excellent!

- Similar pilot study evaluating Model-Based Design carried out at a Thales sister company in Belfast
 - Automatically generated fixed point code ran 30% faster than the hand written fixed point code

