MATLAB EXPO 2017 KOREA

4월 27일, 서울

등록 하기 matlabexpo.co.kr

컴퓨터비전의 최신기술

: Deep Learning, 3D Vision and Embedded Vision

김 종 남 Application Engineer

Three Main Topics

New capabilities for computer vision system design:

Deep Learning

3-D Vision and Image Processing

Embedded Vision

New MATLAB framework makes deep learning easy and accessible

and

MATLAB can be used by experts for real deep learning(computer vision) problems

What is Deep Learning?

Deep learning is a type of machine learning that performs end-to-end learning by learning tasks directly from images, text, and sound.

Two Approaches for Deep Learning

1. Train a Deep Neural Network from Scratch

2. Fine-tune a pre-trained model (transfer learning)

Example: Classify Vehicles With Transfer Learning

AlexNet Pretrained Model

1000 classes
Trained on millions of images

Transfer learning – use AlexNet as starting point

Vehicle Classifier (5 Class)

Car SUV Van Truck Large Truck

Transfer Learning to Classify New Objects

MATLAB makes Deep Learning Easy and Accessible

Learn about new MATLAB capabilities to

- Handle and label large sets of images
- Accelerate deep learning with GPU's
- Visualize and debug deep neural networks
- Access and use models from experts

3D Image Processing

3-D Image Processing

Over 40 functions support 3-D volumetric image processing

Capabilities Includes:

- Image arithmetic
- Morphology
- Segmentation
- Geometric transforms
- Enhancement

<u>Volume Viewer App</u> for exploration

3-D Image Processing

3D Vision – LiDAR Processing

What are Point Clouds?

- Point clouds represent a set of data points in a 3-D coordinate system
- Typically used to measure physical world surfaces

Used for navigation and perception in robotics and Advanced Driver Assista

nce Systems (ADAS)

Common Sources of Point Cloud Data

3-D Vision: Design LiDAR Processing

3:D Vision: Design LiDAR Processing

Embedded Vision System Development using Automatic Code Generation

Typical Workflow for Embedded Vision System Development

Algorithm Development

- Is my idea new? What is required?
- Is it robust to all kinds of conditions? (lighting noise, etc.)

Implementation

- Consideration of HW platform
 - FPGA? CPU? DSP? GPU?
- Speed and resource requirement
 - Resolution, Frame-rate constraint
 - Memory constraint

Development of the algorithm and implementation are often done by different groups

MATLAB Coder app with Integrated Editor and Simplified Workflow

New user interface simplifies code generation workflow

Embedded Coder for Optimized Code

Embedded Coder extends MATLAB Coder with

- Processor-specific code generation
 - Built-in support for select processors
 - Open APIs for use with any processor
- Speed, memory, and code appearance advanced features

MATLAB Language Support for Code Generation

Supported MATLAB Language Features and Functions

Broad set of language features and functions/system objects supported for code generation

Matrices and Array s	Data Types	Programming Constructs	Functions
 Matrix operations N-dimensional arrays Subscripting Frames Persistent variables Global variables 	 Complex numbers Integer math Double/single-precision Fixed-point arithmetic Characters Structures Cell arrays Numeric class Variable-sized data MATLAB Class System objects 	 Arithmetic, relational, and logical ope rators Program control (if, for, while, switch) 	 MATLAB functions and subfunctions Variable-length argument lists Function handles Supported algorithms More than 1300 MATLAB operators, functions, and System objects for: Communications Computer vision Image processing Neural networks Phased Array signal processing Robotics Signal processing Statistics and machine learning

Automatic Translation of MATLAB to C

With MATLAB Coder, design engineers can:

- Maintain one design in MATLAB
- Design faster and get to C quickly
- Test more systematically and frequently
- Spend more time improving algorithms in MATLAB

Vision HDL Toolbox

Design and prototype video image processing systems

- Modeling hardware behavior of the algorithms
 - Pixel-based functions and blocks
 - Conversion between frames and pixels
 - Standard and custom frame sizes

Prototyping algorithms on hardware

(With HDL Coder) Efficient and readable HDL code

(With HDL Verifier) FPGA-in-the-loop testing and acceleration

Pixel Based Video Image Algorithms

Analysis & Enhancement

Edge Detection, Median Filter

Conversions

- Chroma Resampling, Color-Space Converter
- Demosaic Interpolator, Gamma Corrector,
 Look-up Table

Filters

Image Filter, Median Filter

Morphological Operations

- Dilation, Erosion,
- Opening, Closing

Statistics

- Histogram
- Image Statistics

I/O Interfaces

 Frame to Pixels, Pixels to Frame, FIL vers ions

Utilities

- Pixel Control Bus Creator
- Pixel Control Bus Selector

Frame To Pixels and Pixels To Frame

A Complete Solution for Embedded Vision

FLIR Accelerates Development of Thermal Imaging FPGA

Raw image (left) and image after applying filter developed with HDL Code

Challenge

Accelerate the implementation of advanced thermal imaging filters and algorithms on FPGA hardware

Solution

Use MATLAB to develop, simulate, and evaluate algorithms, and use HDL Coder to implement the best algorithms on FPGAs

Results

- Time from concept to field-testable prototype reduced by 60%
- Enhancements completed in hours, not weeks
- Code reuse increased from zero to 30%

"With MATLAB and HDL Coder we are much more responsive to marketplace needs. We now embrace change, because we can take a new idea to a real-time-capable hardware prototype in just a few weeks. There is more joy in engineering, so we've increased job satisfaction as well as customer satisfaction."

Nicholas Hogasten

FLIR Systems