

Brain Imaging Data Analysis with MATLAB: from Pictures to Knowledge

MATLAB EXPO, Bern, June 22, 2017

Dr. Henry Lütcke, Scientific IT Services (SIS), ETH Zürich

Scientific IT Services at ETH Zürich

- Founded in 2013 as part of central IT
- HPC experts, software developers, scientific computing specialists
- 34 team members at 2 sites (Zürich, Basel)
- >50% with PhDs and research experience

"We work closely with ETH researchers to enable research and improve efficiency by providing first-class scientific computing services."

Outline

- Importance of quantitative imaging analysis in neuroscience
- Image analysis examples
 - Signal extraction from noisy neuronal activity measurements
 - Machine learning based quantification of neuronal network activity
- From small to Big Data
 - Scalable analysis with cluster computing

ETH zürich

Neuroscience: Understanding the Brain

Movement

Language

Thinking

Music

What is the brain made of? How does it work?

ETH zürich

Neuroscience: Understanding the Brain

"As long as our brain is a mystery, the universe – as reflection of the structure of the brain – will also remain a mystery."

Santiago Ramón y Cajal (1852-1934)

Burden & Cost of Brain Disease

Deep-brain stimulation in Parkinson's disease

youtube.com/watch?v=mO3C6iTpSGo

Burden & Cost of Brain Disease

The burden of brain disease in Europe (Quantified as Disability Adjusted Life Years Lost)

Disorders of the brain are extremely disabling and incur enormous costs for patients, relatives and society!

Henry Lütcke | 6/14/2017 | 7

The cost of brain disease in Europe

(In billion €, 2010)

The Brain consists of a Large Network of Neurons

The brain consists of a large number of diverse nerve cells (neurons), which communicate via specialized contacts (synapses).

Imaging plays a critical role in revealing brain structure and function.

Importance of Imaging in Neuroscience

around 2000

around 1900

3 Ramón y Cajal 5° (1852-1934)

Imaging at different scales

Single cells / sub-cellular (microscopic)

Networks (mesoscopic)

Brain (macroscopic)

Generic Workflow for Image Analysis

ETH zürich

In vivo Two-Photon Microscopy

Reduced Scattering

Single Photon Two-Photon

Point Excitation

Example 1: Denoising and signal extraction

T. Rose, MPI Neurobiology

Effect of noise

Automated peeling algorithm for spike train reconstruction

B. Grewe and F. Helmchen, Brain Research Institute, University of Zürich

Other algorithms (all MATLAB-based):

- OOPSI (Vogelstein et al., 2010)
- MLspike (Deneux et al., 2016)
- CNMF (Pnevmatikakis et al., 2016)

Denoising and signal extraction

A MATLAB-based simulation framework for systematic evaluation of reconstruction algorithms.

Henry Lütcke | 6/14/2017 | 13

Generic Workflow for Image Analysis

Quantifying Network Activity with Machine Learning

For N = 2:

Classification Algorithms Support Vector Machine Naive Bayes Random Forest Statistics & Machine Learning Toolbox

Supervised Learning Approach

Example 2: Quantifying Network Activity with Machine Learning

Leitner et al., 2016

How is odor information encoded by different neuronal sub-networks?

Quantifying Network Activity with Machine Learning

Leitner et al., 2016

Machine learning analysis reveals that odor information is differentially encoded in defined neuronal sub-networks!

Towards Quantitative Big Imaging Analysis

2009

10 – 50 neurons 100's of MB / h 2011

T. Rose, MPI Neurobiology 100s of neurons 10's of GB / h

Present

Ahrens et al., Nat Meth, 2013 > 10'000 neurons 100's of GB - TBs / h

- More neurons, better resolution, longer recordings → Increased data size & complexity
- Existing analysis workflows based on desktop PCs scale poorly
- Need for scalable, cluster-based analysis pipelines

MATLAB Distributed Computing Server

High-Performance Computing @ ETH Zürich

Euler I & II clusters (Euler III added in 2017)

Euler I

448 compute nodes with two **12-core** Intel Xeon E5-2697v2 CPUs 64 - 256 GB RAM

Euler II

768 compute nodes two 12-core Intel Xeon E5-2680v3 CPUs

64 - 512 GB RAM

Euler III

1215 compute nodes with one quad-core <u>Intel Xeon E3-1285Lv5</u> CPUs 32 GB RAM / 256 GB <u>NVMe</u> flash drive

Big Data Analysis with MATLAB @ ETH Zürich

MATLAB

Distributed Computing Server

Interactive Mode Parallel for loop

```
cluster = parcluster('Euler');
poolobj = parpool(cluster, 10);
acc = 0;
parfor i = 1:1000
    acc = acc + i^2;
end
```


Cluster-scale computing power combined with the convenience of the MATLAB desktop!

Big Data Analysis with MATLAB @ ETH Zürich

ML-based Image Analysis with MDCS or custom MATLAB-Spark integration

Summary & Conclusions

- Imaging techniques are crucial for understanding the brain and ultimately develop better cures
- Recent shift from qualitative to quantitative imaging
- Image analysis skills & techniques are becoming critical
- MATLAB is applied at all stages and has many advantages
 - Intuitive for novices, powerful for experts
 - Excellent documentation
 - Allows rapid code development / profiling
 - Established in the community
 - Parallelization / scalability

T. Rose, MPI Neurobiology

Future Challenges

- Analysis of millions of neurons
- Real-time analysis and targeted manipulations
- Leverage power of deep-learning approaches
- Further standardization of analysis toolbox

Acknowledgments

Scientific IT Service (ETH Zürich)

Rok Roškar Balazs Laurenczy Urban Borstnik Thomas Wüst Bernd Rinn Brain Research Institute (University of Zürich)

Fritjof Helmchen

German Cancer Research Center (DKFZ, Heidelberg)

Hannah Monyer Frauke Leitner

Thank you for your attention!