

Modeling Multidomain Physical Systems in Simulink[®]

Terry Denery

Principal Applications Engineer Motion Systems The MathWorks

Antenna Pointing

Mechanical Modeling in Simulink

- 3D Multi-Body Dynamics
- Driveline Mechanics

SimMechanics

The MathWorks Aerospace & Defense Conference 2006

SimDriveline

Electrical Modeling in Simulink

- Electrical Circuits
- Motors and Actuators
- Power Systems

Hydraulic Modeling in Simulink

Hydraulic CircuitsMotors and ActuatorsPower Systems

MATLAB[®] & SIMULINK[®]

Control Software and Physical System Come Together in Simulink

- Rich modeling environment
 - Physical
 - Behavioral
 - Data-driven
- Control system development tool
 - One environment for controller and plant
 - Code generation enables HIL testing
 - Easy access to control tools

Physics-Based Modeling Methods Improve Control System Design

- Multidomain systems (mechanical, electrical, hydraulic, chemical, . . .)
- Successful controller development requires thorough and accurate understanding of plant

The MathWorks Aerospace & Defense Conference 2006

Fhe MathWorks

MATLAB[®] SIMULINK[®]

Simulation of Antenna Pointing

MATLAB[®] SIMULINK[®]

Antenna System

Electrical-Mechanical Motion System

MATLAB[®] SIMULINK[®]

Antenna System

Hydraulic-Mechanical Motion System

Motion Platform

Accelerometer Measurements

Real boat

Simulation

Reconstructing Motion

Three non-collinear points define position and orientation.

Reading Motion Data into SimMechanics

MATLAB&SIMULINK®

Hardware in the Loop (HIL)

MATLAB[®] & SIMULINK[®]

Lockheed Martin Space Systems Uses SimMechanics with a Real-Time Simulator to Automate Mars Reconnaissance Orbiter Development

The Challenge

The MathWorks

To develop the guidance, navigation, and control system for the Mars Reconnaissance Orbiter

The Solution

Use MathWorks tools to accelerate control design and automate the development of accurate, real-time spacecraft simulations

The Results

- Spacecraft pointing simulation modeled in days
- Interorganization communication improved
- Efficient code generated automatically

Artist rendition of Mars Reconnaissance Orbiter (image courtesy of NASA).

"Simulink®, SimMechanics, and Real-Time Workshop enabled us to autonomously go from an accurate CAD model of the MRO vehicle into C code that runs in real time." Jim Chapel,

Lockheed Martin Space Systems