Science-ing Up Deep Earth Drill Bit Design With MATLAB Production Server

CHRISTOPHER BREMER SOFTWARE ENGINEERING LEAD NOVEMBER 18, 2020

Reed Hycalog NOV

Deep Earth Drill Bits

Roller Cone vs PDC

ROLLER CONE

- 1909 (Hughes)
- Rotating cutting structures
- 19% market share in 2019¹

POLYCRYSTALLINE DIAMOND COMPACT (PDC)

- 1971 (GE)
- Fixed blades
- Cutters brazed on blade
 - Diamond cutting surface
 - Fine control over placement
- 81% market share in 2019¹

Average Rate of Penetration (ft/h)

Average Depth Drilled per Bit (ft)

Average Depth Out (ft) USA 2010-2020

Well Types USA 2010-2020

Design Objectives for PDC Bits

Rate of Penetration

- Less rig time = savings
- Efficient transfer of forces from surface to bit

Durability

- Fewer bits to drill a section = savings
- Cutter wear

Steering

- Predictable tool face (torque)
- Minimize walk

PreCut (Pressurized Cutter Testing) 4D shaped cutter vs planar

Data Driven Bit Design

ReedHycalog Digital Experience Team

ReedHycalog Digital Experience Team

Orbit Architecture

Orbit Client

Orbit 2020.2 File	,				Custom Mode Off 🏾 🌣
Cutting Structure He & & Cutter Cut Analysis Shapes	at Generation A at Generation A ata Parametric DOCC Evaluation	DU WRA OBF SRA DUI WRA OBF SRA	RF W08 & OBF		BitClass: Concentric Approach: Standard
Steady State Respose	Drilling Response	Performance Indices	Bit - Reamer Matching	0	Run Analysis C Override Lock Parameter Evaluation Run Analysis
Concentric	300 250 Signature 200 150 100	0 1250 1500 1750 WOB lbf	 Torque-Pilot(Torque-Pilot(Torque-Pilot(Torque-Pilot(Torque-Pilot(X Axis WOB ✓ Y Axis Torque ✓	Data Input Model Specification

Upload Design

- Schematic File
- Link to CAD

Run Analysis

- KPIs
- Simulations

Iterate

• Design Objectives

Export

- Design Review
- Sales

Why MATLAB Production Server?

Separation of concerns

- Intellectual property
- Engineers "own" code
- Performance

Rapid deployment

- Easy to use API
- Few modifications to R&D code
- Automated management of runtime
- Update in place

Orbit Pipeline

MATLAB Code

- R&D
- Source Control

MPS Template

- Build Script
- Standard API
- .NET / Yeoman

CI/CD

- Automate
 - Build
 - Test
 - Deploy

UAT/Production

- Integration
- Validation
- Release

Case Studies

Predicting wear

Cutter wear is costly

- Decreased efficiency
- Bits replaced mid section
- Health and Safety

What drives cutter wear?

- Mechanical wear? Abrasion?
- Thermal conditions downhole
 - Substrate-to-diamond table bond degrades
 - Diamond degrades

Extreme temperatures accelerate cutter wear

Mitigating Thermal Wear

- Cutter Technology
 - Materials
 - Manufacturing Process
- Heat generation
 - Friction
 - Propagation
 - Cutter placement
- Heat transfer
 - Drilling fluid
 - Nozzle placement

A Solution

- Thermal load model
 - R&D Team (Babaie Aghdam)
 - Friction & heat propagation
 - Finite element analysis
 - Validated in the field (dulls)
 - Algorithm implemented in MATLAB
- Orbit
 - Pipeline
 - New visualization
 - Integration with computational fluid dynamics (nozzle placement)

Thermal Analysis Chart

Thermal load vs cooling efficiency

- Cutters ordered by radius
- Top axis: increase in cutter temperature
 - MATLAB model
- Bottom axis: heat transfer (drilling fluid)
 - Computational Fluid Dynamics (CFD)

Workflow:

- Run thermal load analysis (Orbit)
- Export to CFD
- Upload CFD output to Orbit

A better physics model

Extrapolate cutter forces to whole bit.

• Originally based on experiments run at surface.

Material properties of rock change under pressure

– Brittle at surface, ductile at depth

A new standard

- Pressurized drilling lab
- Discrete element analysis
- AMBAR Model (Rahmani)

The Prototype

File Home Ins	ert Page Layout	Formulas Da	ata Review	View	Develop	er H	elp	Team	Q	Search												ßS	hare	🖓 Con	nment
A	В	С	D	E	F	G	н	4	1	J		К	L		М	N	0	Р	Q	R	S	т	U	V	
2	Browse Primary bdt										1											•			
3 Run Single Analysis	Browse Secondary bdt	t									0.9														
4 Run Batch Analysis	Browse Hybrid bdt										0.5														
6	Hybrid Contact Area										0.8														
Parametric Evaluation	- Hybrid contact Area	-									0.7														
8	Orbit CSV			_						[sq	0.6														
9 RPM		File name	100 C 100 C 100							王	0.5														
10 Rock type	T	e Bit Size (in)	100			λ				ane	0.4														
11 Cutter Surface Finsih	and the second second	Reamer Size (in)	100							ŏ	0.4														
12 Chamfer type	100	Depth of cut (mm)									0.3														
13 Hybrid Type	and the second second	ROP (ft/hr)					_				0.2														
14 Bottomhole Pressure (ks	i	WOB (lbs)									0.1														
15 User Defined Formation		Torque (ftlbs)									0														
16 Record Values	Clear Table	MSE (psi)	the second se								0	0	0.2		0.4	0.6	0.8		1						
17	cical table	Total OOBF (% of WC	DB)									0	0.2		0.4	0.0	0.0		-						
18 Export Results															v	VOB (lbs)									
22 File name	Bit Size (in)	Reamer Size (in)	ROP(ft/hr)	RPM I	DOC (mm) V	/OB (lbs)	Torque	(ftlbs) I	MSE (psi)	OOBF	Ro	k type	Surface fir	nish C	hamfer	Insert Type	Pressure (ksi) Labe	I Plot						
23																		1	Y						
24																		2	Y						
25																		3	Y						
26																		4	Y						
27																		5	Ŷ						
28																		6	Y						
29																			r V						
31																		9	v						
32																		10	Ý						
33																		11	Y						
34																		12	Y						
35																		13	Y						
36																		14	Y						
37																		15	Y						
38																		16	Y						
39																		17	Y						
40																		18	Y						
41																		19	Y V						
46				_						<u> </u>				_	_		_	20							

- Excel spreadsheet
- Extensive VBA routines
- Calculation performed on hidden sheets

Limitations:

- Hard to maintain, distribute
- User manages artifacts

AMBAR in Orbit

- Integration
 - Rewritten in MATLAB
 - Pipeline
 - Automated
 - No need to manage artifacts
- Continuous improvement
 - Multiple iterations pushed since release
- Reception
 - Engineers have greater confidence in output
 - Better usage
 - Sales support
 - New Analyses

Torque Control

Torque variation makes steering harder

- Hooke's law
- Weight on bit fluctuation
- Torque control components (TCC)

AMBAR

- Better model for TCC
- Better model downhole
- Enables finer analysis like DOCC

