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How can other industries inform Al in finance?

= Four learnings from outside of finance
= Three areas of exploration
= Two quick MATLAB PSAs (public service announcements)

Al in this talk includes;
machine learning, deep learning, reinforcement learning...
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Our Customers / Key Industries
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Aerospace and Defense

Electronics

Process Industries Neuroscience Railway Systems Semiconductors Software and Internet
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Four Learnings from Other Industries

1. Plenty of value away from the “obvious™ applications

2. There’s no reason not to look for your keys under the street light:
If you have data use it

3. Regulations can be tough — but perhaps not for advice.
4. If you don’t have data, can you create it?
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Society of Automotive Engineers
Levels of Autonomous Vehicles

AUTOMATED DRIVING SYSTEM
MONITORS DRIVING ENVIRONMENT

HUMAN DRIVER
MONITORS DRIVING ENVIRONMENT

O S

No Automatlon Driver Partlal Conditlonal High Full
Asslstance Automatlon Automation Automatlion Automatlion

Advanced Driver o
Assisted Systems (ADAS) Automated Driving Systems
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Subaru (a customer)

Advanced Driver-Assistance Systems

Critical safety features for everyone

Detects obstacles, applies brakes, adjusts
cruise control, and stays in lane
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BMW - Machine Learning to Detect Oversteering

“With little previous experience with machine
learning, we completed a working ECU
prototype capable of detecting oversteering

In just three weeks.” Tobias Freudling, BMW
Group

- Engineers gathering and cleaned data

—
- Explored many machine learning approaches ol | '@ !\ “1 \ f
with Classification Learner App ° h, \ | ‘
= Generated code for vehicles on test track | Lr‘h ’““l‘“‘ M m
ot || ' l|U it | i IR
| ] ' m
a ! g i W il

Link to technical article T me w wm we w wo .



https://www.mathworks.com/company/newsletters/articles/detecting-oversteering-in-bmw-automobiles-with-machine-learning.html
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Four Learnings from Other Industries

2. There’s no reason not to look for your keys under the street light:
If you have data use it
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Musashi Seimitsu Industry Co.,Ltd.
Detect Abnormalities

Automated visual
iInspection of 1.3 million
bevel gear per month

Manufacturers
often have a trove
of labelled data

12
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Four Learnings from Other Industries

3. Regulations can be tough — but perhaps not for advice.
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Genentech
Deep Convolutional Neural Networks for Digital Pathology Analysis
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Generate training data iteratively

= Modelis iteratively improved by adding
more data

= Removes need to annotate tumor by hand

Green = tumor
Red = necrosis
Blue = other

Accuracy:
0.96
Mean accuracy:
0.92
Mean IoU:
0.79

Segment tumor tissue from necrosis
= Segmentation of massive 25k x 25k images

* Trained and deployed U-Net semantic
segmentation algorithm

Not a diagnhosis!
Assists pathologist

Genentech
A Member of the Roche Group

Presented at American Conference on Paramacometrics ( 7t October 2018)
Deep Convolutional Neural Networks for Digital Pathology Analysis
Jeffrey Eastham-Anderson, Kathryn Mesh, Jeff Hung, Andrea Dranberg (MathWorks) 14




MATLAB PSA #1

4\ MathWorks
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Use the Live Editor to create scripts that combine code,

output, and formatted text in an executable notebook.

B LiveEdit

Y Y cem (v

or - C\MATLAB\SunriseSunset.mlx

LIVE EDITOR INSERT VIEW

511:, - E@FMFH 4L

|1z compare ] GoTo ‘;_‘

|

FILE | NAVIGATE |

@ Run Section
=4 Run and Advance

Estimating Sunrise and Sunset

We can calculate sunrise and sunset times from the following equations.

12 4 cos (—tangtand) _SC

—1 '
sunrise = 12 — 95~ (= tangtand) _SC sunsel =
15° 60
long = -71 2, H
lat = 42 . ;
timeZone = [‘Eastern (UTC-5) vl

|'Eastern (UTC-5) %
sc1= solarT ‘Central (UTC-6)' cimeZone);
delta = asi : (360*(days - 81)/365));
B ‘Mountain (UTC-7)' t
sunrise = 1_ ouni?ln”‘ --,).,\,-_,-)*tand(delta))/15 - 5c/60;
sunset = 12 + acosd(-tand(lat)*tand(delta))/15 - sc/68;

plot(days, sunrise, days, sunset, 'LineWidth’, 4)
title('Sunrise and Sunset')
xlabel('Day of Year')

Time of Day

Sunrise and Sunset

-
o

-
o

— Sunrise
— Sunset

50 100

150 200
Day of Year

250
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R2016a
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LIVE EDITOR INSERT FIGURE ®
':::IF' ™ ﬁ [‘;;TJFind Files 4} w9 % Normal-' Task' % % D, CY
New Open Save [l Compare 5 GoTa ~ Text BIUM Code —- Control~ 53 [z SECTION - Step  Stop
- - ~ & Print ({ Find ~ =i L& Refactor -
FILE NAVIGATE TEXT CODE v RUN =
. . = | E3
Modeling Government Bond Data Using Yield Curves B)
We wish to model government bond yield data using Nelson Siegel and Svensson models. This notebook calculates Jacobian matrices for E
these models. The Jacobians will be used to speed up the curve fitting routines that optimize model parameters.
Nelson-Siegel Model Svensson Model
; ) b [} . by byt t
n=ht..0=b+ :—bz‘ ya=flt )=+ - L"f'h!.r
hoA R
e he e he' Le
N INt ted with
Syl nbolic Math Toolbox
Note that t is the independent variable in these models, and represants time to maturity.
Sym bOIIC and NU| I lerIC . Ne|son.5iege| model
in One Live Ed|t0|‘ NotebOOk Define the Nelson-Siegel model equation:
1 syms b@ bl b2 t tl1 —
2 yl = ba + bl * exp(-(t/tl)) + b2 * -(t/tl) * exp(-(t/t1)); # Figure 3 -0
b]vals - 4 . File Edit View Insert Tools Desktop Window Help ~
3 Fsurf(subs( [be bl b2], [ b,l /710, [ 1 T
4 surf(subs(yl, 8 bl b2], [2 blvals 58/7]), [@ 4@ 5 & .
L L UK Yield Curve
5 wlabel("t"), ylabelf't 1"} 45 e
4 i ®
35 LZ
3 .
-
E 25 4
>
2
s ¢ Data
f ——Svensson fit
T' Svensson fit with Jacobian
‘150 5 10 15 20 25 30 35 40
Maturity 17
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Four Learnings from Other Industries

4. If you don’t have data, can you create it?
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Predictive Maintenance: Reciprocating Pump

Predict pump failures in real-time using sensor data

4\ MathWorks

“| keep my machines
healthy and running so

how do I get failure
data to train a model?”

Outlet
Check
Valve

Valve

19



Generate Data

Obtain sensor data

Sensor Data

Fine tune model

Build model

\

Simulink Model

-
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Run simulations

Generated

Failure Data
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Edit View Insert Tools Desktop Window Help
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Incorporate failure modes
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Preprocess Data

File Edit View Insert Tools Desktop Window Help
Ndd kR UDRL- |30 D

i
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Failure Data (Sensors/Simulation)

'

Data Preprocessing |
Methods

Time Domain
Frequency Domain

Time-Frequency

Domain
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[4] Figure 2
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Preprocessed Data
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Feature Extraction & Condition Monitoring

z = Elg
Fill Edit View Insert Tools Desktop Window Help -
NEHS| & R2UDEA- |3 I =D

Motor Deterioration Fault
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Preprocessed Data
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Feature Extraction
Methods

»  Order/Modal Analysis

» Time-Frequency
Analysis

*  Input-Output Models

=  Model Coefficients &
States

=  Residual Generation

View Insert Tools Desktop Window Help

Edit
DBH@\%I. W9E -2 0E DT
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T T T

Frequency Peaks l‘i\‘
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Health Indicators
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Predictive Model Training

=
4] Figure 2

File Edit View Insert Tools Desktop Window Help
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Health Indicators

Predictive Methods

=  Anomaly Detection

»  Fault Classification

» Remaining Useful Life
= Trending

» Hazard Distributions

= Time series
Forecasting

4\ Regression Learner
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Three Topics to Watch

4\ MathWorks
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Three Topics to Watch

#3 Fragmentation in Hardware Architecture? (for Deep Learning)

4\ MathWorks
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Fragmentation in Hardware Architecture?

= NVIDIA Is the standard for
data-center deep learning

- But there are challengers;
— FPGA from Xilinx, Intel, others
— AMD Radeon
— Google’'s TPU

— Embedded processors from ST,
Tl, Renasas, Infineon

= Over $1B of venture
Investment in Al chip startups

= Cloud Is an accelerator
= Training vs. Inference

Multiple vendors doing ARM

XEON®

AMD Intel

GRAPHICS

N

RADEON

NVIDIA

SELATTICE

£ XLUNX. (B < mioocoms

Movidius”
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GPU falling out of favor as hardware for embedded deployment?

BROEXECEEE
& SHEEESE. .
Y ARG SR | |
it o EEEDRED . e '
micedeticc. P S T HIBEISE . el .~ | Edge computing hardware zoo:

Intel Neural Compute Stick 2 (left, top)
Movidus Neural Compute Stick (left, bottom)
NVIDIA Jetson Nano (middle, top)

Raspberry Pi 3, Model B+ (middle, bottom)
Coral USB Accelerator (right, top) Google TPU
Coral Dev Board (right, bottom) Google TPU
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Image courtesy of Dr. Allasdair Allan
http://bit.ly/great-big-roundup
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https://blog.hackster.io/getting-started-with-the-nvidia-jetson-nano-developer-kit-43aa7c298797
https://blog.hackster.io/getting-started-with-the-nvidia-jetson-nano-developer-kit-43aa7c298797
https://blog.hackster.io/getting-started-with-the-nvidia-jetson-nano-developer-kit-43aa7c298797
https://blog.hackster.io/meet-the-new-raspberry-pi-3-model-b-2783103a147
https://medium.com/@aallan/hands-on-with-the-coral-usb-accelerator-a37fcb323553
https://medium.com/@aallan/hands-on-with-the-coral-dev-board-adbcc317b6af
https://protect-us.mimecast.com/s/3YTdC68M7gcGBv0wupI8vK?domain=bit.ly

If multiple architectures become viable, then what?

- Evaluate HW for purpose — choose target
= Develop in high level language
= Transform to target executable

= A small number of finance customers doing this today
(GPU, FPGA). WiIll this grow?

DESIGN

-n

4N
L / VHDL

MATLAB Slmulmk Stateflow Re-used IP )

5

‘I]

Prototype Productlon

4\ MathWorks
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MATLAB PSA #2

4\ MathWorks
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Run MATLAB code faster with redesigned execution engine.

= All MATLAB code is now JIT compiled

= Incremental improvements each release

Faster assignment into large table, datetime,
duration, and calendarDuration arrays

Construct objects and set properties faster

Render plots with large numbers of
markers faster using less memory

Increased speed of MATLAB startup

2015

4\ MathWorks

2015

Average Speedup in Customer Workflows

2016

2017

2018

2019

2019

30



Three Topics to Watch

#2 Reinforcement Learning

4\ MathWorks
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Reinforcement Learning in the News Focuses Mainly On...

Board Games
o Chess
o GO

Video Games
o Atari
o DOTA, Starcraft

Recommendation
Systems

RESEARCH

Posterior Sampling for Large
Scale Reinforcement Learning

Mov 21,2017

Posterior sampling for reinforcement learning (PSRL) is a
popular algorithm for learning to control an unknown Markov
decision process (MDP). PSRL maintains a distribution over
MDP parameters and in an episodic fashion samples MDP

parameters, computes the optimal...

32
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...But Increasingly Being Seen In Context of Autonomous Systems

« Learn Complex Tasks

o Manipulation
o Planning

o Navigation
o Control

EE Q Sign in News Sport =~ Weather = Shop = Reel = Travel M

Technology

Al solves Rubik's Cube in one second
® 5 hours ago f ® ¥ [ <« share

/ . GOAL 49
N t

Source: OpenAl

An artificial intelligence system created by researchers at the University of
California has solved the Rubik's Cube in just over a second.

Source: Google
33



Traditional “Controls® Customers Have Proactively Engaged
100+ customers have spoken to us about Reinforcement Learning since 2018

« Reinforcement learning
needs a lot of data, usually
generated from models

= Models can incorporate
conditions hard to emulate In
the real world

« Many of them have
MATLAB and Simulink
models that can be reused

|

Autonomous Systems
(e.g. Robots)

] [ Calibration Problems

] .
o
o
4 X .
S -
P IS
» O
rrai

_

(e.g. Engine Maps)

|

Controller Design for
Nonlinear Systems

] [ Automated Driving

4\ MathWorks
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Using Reinforcement Learning to Improve Driving Control

4\ MathWorks

Models like this are used by our customers to develop controllers and other algorithms

’i OwalTrackVDBS_RL_19%a - Simulink

- X
file Edit View Display Diagram Simulation Analysis Code Tools Help
] = 3 = o i
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RL for Autonomous Driving — Co-simulating with Unreal Engine
Project With A Major Automotive Company

Step 1: Trained deep neural
network (DNN) based driver

Step 2: Use RL to improve
performance of DNN-based driver

Step 3: Use improved DNN to
augment traditional controller

Result: 2+ sec (7%) faster than the
original driver

Image (Observation)

e
RL Agent

Traditional

Controller

Car Position (Observation)

Time [s]:

- ‘-l""" ‘

&\ MathWorks
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RL Interest Growing in Finance

@ MathWorks®  poducts  sohwons  Acodema  Support  Communty €

Reinforcement Learning Toolbox

Notably JP Morgan LOXM (Limit Order
Execution Management
P Design and train policies using reinforcement learning

= . ] ]
ositive results for our first experiments vt
Stock trading
. Reinforcement Learning Toolbox™ provides functions and blocks for training policies
using reinforcement learning algorithms including DON, A2C, and DDPG. You can
use these policies to implement controllers and decision-making algorithms for

complex systems such as robots and sutonomous systems. You can implement the

Reinforcement Learning Toolbox

policies using deep neural networks, polynomials, of look-up tables.
- - - - The toolbox lets you train policies by enabling them to interact with environments
represented by MATLAB® or Simulink® models. You can evaluate algorithms,
| ] — |
experiment with hyperparameter settings, and monitor training progress. To improve
training performance, you can run simulations in parallel on the cloud, computer

clusters, and GPUs (with Parallel Computing Toolbox™ and MATLAB Paraliel

Server™),

.
. - Through the ONNX ™ model format, existing policies can be imported from deep
| leaming frameworks such as TensorFlow™ Keras and PyTorch (with Deep Learning
] Toolbox™), You can generate optimized C, C++, and CUDA code to deploy trained

— Dynamic Replication and Hedging: | ke
A Reinforcement Learning Approach |

Froe ebook
Reinforcement Learning with MATLAB:
Understanding the Basics and Sefting Up the
Environment

§ Download now
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Three Topics to Watch

#1 Explainability and V&V for Al

4\ MathWorks
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Explainability in Finance: Principles of fairness require
being able to explain why the model is making decisions

2. Use of personal attributes as input factors for AIDA-driven
decisions is justified.

4. AIDA-driven decisions are regularly reviewed so that models
behave as designed and intended.

8. Firms using AIDA are accountable for both internally
developed and externally sourced AIDA models.

13. Data subjects are provided, upon request, clear
explanations on what data is used to make AIDA-driven
decisions about the data subject and how the data affects the
decision.

“AIDA” refers to artificial intelligence or data analytics, which are defined as technologies that assist or
replace human decision-making.
https://www.mas.gov.sg/~/media/MAS/News%20and%20Publications/Monographs%20and%20Inf
ormation%20Papers/FEAT%20Principles%20Final.pdf

Principles to Promote Fairness, Ethics,
Accountability and Transparency
(FEAT) in the Use of Artificial
Intelligence and Data Analytics in

Singapore’s Financial Sector

4\ MathWorks
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https://www.mas.gov.sg/~/media/MAS/News%20and%20Publications/Monographs%20and%20Information%20Papers/FEAT%20Principles%20Final.pdf

4\ MathWorks
Trade-off between predictive power and explainability

Ensemble methods

Deep
Explainable models Boosted Nearal
Trees $
Random
. Forests
: \'\C\W Shallow
cimnP - Neural
Decision Networks _ owe'
. Trees \clive
Logistic 4 _ gP‘-ed\
Naive Regression \n deasm
Scoring g?gsessi:ﬁer Large quantities of data |
Rules Automated feature extraction

Classical Machine Learning

40
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22019
Attribution Reveals the Why Behind Deep Learning Decisions

golden retriever (0.55)

mouse, 0.46095 buckle, 0.14911
remote control, 0.24144 sock. 0.087194

computer keyboard, 0.12748

mailhag, 0.056052

Classified as “keyboard” due in part Incorrectly classified “coffee mug”
to the presence of the mouse as “buckle” due to the watch

https://www.mathworks.com/help/deeplearning/examples/investigate-network-predictions-using-class-activation-mapping.html
https://www.mathworks.com/help/deeplearning/ug/gradcam-explains-why.html 41



https://www.mathworks.com/help/deeplearning/examples/investigate-network-predictions-using-class-activation-mapping.html
https://www.mathworks.com/help/deeplearning/ug/gradcam-explains-why.html
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Across Industries there are different meanings for...

Verification & Validation for Al

® o o ® ®
EXPLAINABILITY INTERPRETABILITY o o o SAFETY
CERTIFICATION

Can you explain Can you observe Is Al system Can an attacker Has Al system Has Al system
the working of Al and trace cause immune from deduce sensitive been developed been developed
model in human- and effect in an Al spoofing and other training data from  with defined, with safety
understandable model and explain common attacks ?  output of Al model traceable and lifecycle as key
terms? the rationale of or system? rigorous process?  component.

the decision?

42



4\ MathWorks

Common safety practices

Data Best

Redundancy Monitoring Auditing Separation Practices
[ : | : \ [ : \f : \[ A |
Redundant Failure mode Monitoring and Audit trails of Firewalls between  Documentation of
implementation analysis to ensure  logging to record development training and best practices
with voting safe behavior in decisions for post-  activities test/validation being followed to
anticipated mortem analysis data to ensure improve
scenarios appropriate repeatability

accuracy metrics
are computed

43



Safety Standards Updates:

Very Early Phase

TUV SUD
— Open GENESIS
— Started in May 2019

SAE and EUROCAE
— Joint Working Group WG-114
— Kick-off in August 2019

RTCA (Aerospace, US)
— Still evaluating member’s interests

ISO JTC 1/SC 42

— Standardization program on Atrtificial Intelligence

— In “Preparatory” phase — work not yet started

VDE DIN

4\ MathWorks
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When designing physical products

Modeling & Simulation

Code Generation

Test &
Verification

‘ MathWorks:
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Much of the process may be regulated

Certification
7y
\/
Requirements tracing | HIL
Test
\J/ Management \s
Simulation Code inspection
7N 7N
\/ \o
Property proving Test generation
7N 7N
\/ \/
Standards checks Code verification
N 7N
\/ \/

Vv W

‘ MathWorks:

46



Connected Systems Means...

Discover, Operation

Prototype,
Modglp, Test & Verify

Simulate

Generate
Code, Deploy

Operate .

rrrrrrr

4\ MathWorks

Fluid Property
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Positive improvements from field data

Fluid Property

Gearbox Oil

V.next

Discover, Operation

Prototype,
Modglo, Test & Verify

Simulate

Generate

Code, Deploy
Operate .

A R
. — | B = g %
D e S I n = \ Transformer
‘n,‘ Windings Temperature Monitorin:
N § e erature
\ \ _
\

4\ MathWorks

48



' Model Risk Management — The Model is the Product

Risk management Model developers,
Board and stakeholders guants, analysts.
Re%illa(t;)v:mers Business lines
+ Emphasis off* " o o 0
toring,
— Process .&. Repoonrlti?lrénagnd Definition and ...
Performance Development
A
. People ssessment
— Inventory of Assets odel
— Execution Phase Implementation nventory Review and Independent model

and Deployment Approval review and audit
4 Reportlng I T, front-office Regulator

- Model Users
Q?arn More o o el %

ssurance, dh
WPlaﬁorm Mk Models e

implementation

aul Peeling, MathWorks validation

Model Validation, IT SBa S

‘ MathWorks:
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“Explainability” More than SHAPley and LIME

= ...and Partial Dependency Plots and ... this is an active area of research
« The basics apply:
— What is the quality and relevance of the data used to train the model?

— Has the process to develop the model been recorded properly? (How was the data
cleaned? What were the parameters used for training?)

— How will the model be monitored in use?

= Anecdotally, customers have been able to explain models and methods

sufficiently to allow use, when they have followed good practices.
— Talk with our consultants if you need help with this

50
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Four Learnings from Other Industries

1. Plenty of value away from the “obvious™ applications

2. There’s no reason not to look for your keys under the street light:
If you have data use it

3. Regulations can be tough — but perhaps not for advice.
4. If you don’t have data, can you create it?

Three Areas to Watch

1. If your application is performance dependent; Hardware Options
2. Reinforcement Learning is developing quickly, time to investigate?
3. Al regulations are here and coming; good practices are important
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